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Abstract—In this paper we present some SAT and MaxSAT
codifications for trees in graphs. We review two known encodings
and suggest four new ones. We categorize the encodings into three
categories: Absolute encodings state that each vertex must be
in a fixed position in some structure; Relative encodings state
the relative positions between the vertices in some structure;
Counting-based encodings use theoretical graph properties to
hardcode the degree of each vertex in a tree. We use these
encodings to reduce the Steiner Tree Problem in Graphs to
(Partial Weighted) MaxSAT and compare their efficiency to solve
random instances and ones from the SteinLib benchmark. The
experiments strongly suggest that relative encodings are more
efficient than absolute ones, but there is not an overall best
encoding between relative and counting-based ones.

I. INTRODUCTION

Due to the growing efficiency of SAT and MaxSAT solvers,
the interest on solving NP-Complete and some NP-Hard prob-
lems with SAT or MaxSAT has grown. Among these problems,
the ones related to graphs, like the Hamiltonian Cycle, Steiner
Tree, Isomorphism and others problems, are widely studied.

In reductions from graph problems to SAT or MaxSAT, it
is usual to encode structures like paths, cycles, independent
sets, vertex mapping, and others [1], [2], [3], [4], [5], [6], [7].
Each encoding can be classified according to the semantic of
its variables [8], [7].

In this paper, we present encodings for trees. Given a graph
G, we build some SAT or MaxSAT instances whose solutions
represent a tree in G. We review two known encodings and
show four new ones, and classify them.

Our main application is the Steiner Tree Problem: Given
a weighted graph G = (V,E,w : E → N) and a collection
of its vertices S ⊆ V (called the terminal ones), this problem
consists of finding a tree that contains all terminals vertices
whose sum of the weights of its edges is minimal. This
problem is known to be NP-Hard [9], and has applications,
for instance, in Computation Geometry and Circuit Design
[10]. As we show, the problem can be polynomially reduced to
MaxSAT through propositional formulae using tree encodings.

This paper is organized as follows: Section II provides
preliminary definitions and notations. Section III provides
some background on known encodings for graph problems.
Section IV describes absolute encodings for trees and for the
Steiner Tree Problem. Section V describes relative encodings
for the same problem, while section VI describes counting-
based encodings. Finally, section VII shows some experimental
results, while section VIII concludes and suggest future works.

II. PRELIMINARIES

Let us recall some SAT and MaxSAT definitions. A
boolean variable is a variable that may assume a truth value. A
literal is a variable xi or its negation, ¬xi. A clause C is a dis-
junction of literals. A clause C = (¬l1∨...∨¬ln∨p1∨...∨pm)
can also be written as C = (l1 ∧ ... ∧ ln) → (p1 ∨ ... ∨ pm)
when convenient. An assignment is a set of literals where xi

and ¬xi do not occur simultaneously, for any variable xi.

A clause is satisfied by an assignment if there is a literal
occurring both in the clause and the assignment. A Conjunctive
Normal Form (CNF) formula is a conjunction of clauses. An
assignment satisfies a CNF formula if it satisfies all its clauses.
An assignment that satisfies a CNF formula is a model of it.

The Satisfability problem (SAT) consists in deciding
whether a given CNF formula has a model. The Partial
Weighted Maximum Satisfability Problem (MaxSAT) consists
in, given a set of hard clauses whose conjunction forms the
hard formula and a set of weighted clauses (called the soft
clauses, denoted by (C,W (C))), finding a model of the hard
formula whose sum of the weights of the satisfied soft clauses
is maximized.

We denote by V the set of vertices of a graph, by E the
set of its edges if it is undirected, and by A the set of its arcs
if it is directed. We denote by w(ei), the weight of the edge
ei. Also, we denote the set of neighbors of a given vertex vi
by N(vi) = {vi1 , vi2 , ..., vi|N(vi)|}. A vertex is not considered
a neighbor of itself.

III. BACKGROUND

In this section we present some background on encodings
for graph problems. Firstly, Prestwich suggested some encod-
ings for the Hamiltonian Cycle Problem [8]. In his encodings,
Prestwich suggested to create a boolean formula that, given
a graph G, is satisfiable iff G contains a Hamiltonian Cycle.
This formula is created by encoding some structure relative to
the vertices in G and constraints applied to it. In this case,
a permutation of the vertices is encoded and constraints are
added to ensure that there is an edge in the graph between
each pair of adjacent vertices in the permutation.

Prestwich suggested two encodings: the absolute encod-
ing and the relative encoding. In the absolute encoding, all
the boolean variables used in the formula encode the exact
(“absolute”) position of all the vertices in the permutation.
Clauses ensure that: each vertex occurs in the permutation;
no vertex occurs more than once in the permutation; no two



vertices occurs at the same position of the permutation; the
vertex chosen to be the first one occurs at the first position of
the permutation; and there are no pair of adjacent vertices not
connected by a single edge in G.

Absolute encodings can also be classified according to
the semantic of the models of the formula, as detailed by
Velev&Gao [7]. In the direct encoding, |V |2 variables are
created: variable xi,j is true iff vi ∈ V occurs at the position j
of the permutation. In the log encoding, |V |dlg |V |e variables
are created, and each variable encodes a bit in the binary
representation of an index in the permutation. muldirect, ITE-
linear and ITE-log absolute encodings can also be cited, among
others [7]. In this paper, we consider the direct encoding to
build the absolute codifications.

In the relative encoding, the boolean variables used in
the formula encode the relative order between vertices in
the permutation. For each pair of vertices in G, two types
of variables are defined: variable si,j states that vj is the
successor of vi in the permutation, and the variable oi,j
states that vi precedes vj in it. Clauses are then added to the
formula to ensure that every vertex occurs exactly once in the
permutation and has exactly one successor and one antecessor,
and the induced sequence does not contain any pair of adjacent
vertices where there is no edge between them in the graph.

Velev&Gao noticed that si,j can be defined only when the
edge {vi, vj} is in the graph. Also, since oi,j ↔ ¬oj,i holds
in any model of the formula, then oi,j can be defined only for
pairs of vertices where i < j, and all literals oi,j , with i > j,
can be replaced by ¬oj,i. This makes the formula smaller and
also easier to be solved by a SAT solver [6].

The ideas behind these encondigs can be adapted to solve
problems by SAT other than Hamiltonian Cycle. For instance,
a reduction from the (decision) Treewidth Problem to SAT
is suggested by Samer&Veith [5]. Their reduction uses an
encoding that can be classified as relative, since their encoding
uses boolean variable to state whether a vertex succeeds
and precedes another in a linear ordering, analogous to the
variables si,j and oi,j described previously. Like Velev&Gao,
they also replace oi,j by ¬oj,i when i > j.

Also, reductions from Graph k−Coloring that use absolute
encodings and its variants are presented by Van Gelder [11].
He shows a direct encoding, where a variable xi,j states that
vertex vi ∈ V is colored with color j, where 1 ≤ j ≤ k. A
log encoding is also shown, where the binary representation
of the index of the color of each vertex is encoded.

In this paper, we study some known encodings for trees
and suggest new ones, and use them to solve the Steiner Tree
Problem. In our previous work, we suggested an encoding for
this problem that we do not consider absolute nor relative.
This encoding - which we classify as counting-based, use
cardinality operators and theoretical graph properties to encode
the existence of paths between vertices [1]. In particular, we
encoded paths between vertices using a class of cardinality
operators, and then presented a way to use these encodings to
obtain a tree. This construction is reviewed in this paper.

In the next sections we describe two known and four new
encodings for trees and the Steiner Tree Problem. Two of them
are considered absolute. Other two of them are considered

relative, and the remaining two encodings are considered
counting-based.

IV. ABSOLUTE ENCODINGS

In this section we present two absolute MaxSAT encodings
that ensure the existence of a tree in the given graph. Given a
graph G and a set of its vertices S ⊆ V , both encodings build
a hard formula whose models describe a connected subgraph
of G containing the vertices in S. Soft clauses are then added
to make this subgraph minimal, resulting in a tree. For the
Steiner Tree problem, the set S consists of all terminal vertices.
However, one can set S = V , for instance, to encode a tree
that contains all vertices in the graph.

We present two absolute encodings, which we call DFT-
based and Path-based. The first one is based on an idea given
by Kautz et al. [3], while the other one is a new encoding.

A. DFT-based encoding

Kautz et al. suggested an idea for a reduction from the
Steiner Tree Problem to MaxSAT where each optimal model
of the resulting formula describes a depth-first traversal (DFT)
of a tree in the graph [3].

As described, given a weighted graph G and a subset of
its vertices S ⊆ V , this encoding generates a hard formula
FDFT (G,S) whose models describe a connected subgraph
that contains the vertices in S. Soft clauses are then used to
minimize such subgraph, which results in a tree.

Firstly, let us make the graph directed: let us replace each
edge {vi, vj} ∈ E with two arcs (vi, vj), (vj , vi) ∈ A.

Any subgraph of G can be described by the cyclical
sequence of its arcs in the order they would be visited in a
depth-first traversal. Also, if we allow some arcs to appear
more than once in the sequence, we can fix its size to the
largest possible, 2|E|.

As an example, consider that G′ = ({v1, v2, v3, v4},
{{v1, v2}, {v1, v3}, {v1, v4}) is a subgraph of a graph G
that contains 4 edges. A possible sequence of 2× 4 = 8 arcs
that describes this subgraph is ((v2, v1), (v1, v3), (v3, v1),
(v1, v4), (v4, v1), (v1, v2), (v2, v1), (v1, v2)).

For each arc (vi, vj) ∈ A, and for each 1 ≤ t ≤ 2|E|, let
us associate a boolean variable xi,j,t that states that the arc
(vi, vj) occurs at position t in the sequence. To ensure that
the sequence describes a valid traversal, we suggest to build
FDFT (G,S) with the following clauses:

a. For each (vi, vj) ∈ A and for each 1 ≤ t ≤ 2|E|,
xi,j,t → (xj,j1,t′ ∨ xj,j2,t′ ∨ ...x

j,j|N(vj)|,t′
), where t′ =

(t mod 2|E|) + 1. These 4|E|2 clauses state that, if the arc
(vi, vj) occurs at position t , then some arc from vj must
follow it in the next position, t′.

b. For each (vi, vj) ∈ A and for each 1 ≤ t ≤ 2|E|,
xi,j,t → (xj,i,1 ∨ xj,i,2 ∨ ... ∨ xj,i,2|E|). These 4|E|2 clauses
state that, if the arc (vi, vj) occurs in the sequence at all, then
its inverse arc must occur, too. Hence, each edge of the original
graph must be visited in both ways or must not be visited at
all during the transversal.



c. For each 1 ≤ t ≤ 2|E| and for each pair of distinct arcs
(vi, vj), (vk, vl) ∈ A, xi,j,t → ¬xk,l,t. These 8|E|3 − 4|E|2
clauses state that there is at most one arc in each position of
the sequence.

d. For each vs ∈ S, and for each 1 ≤ t ≤ 2|E|, xs,s1,t ∨
xs,s2,t∨ ...∨xs,s|N(vs)|,t. These 2|S||E| clauses state that some
arc from vs occours in the sequence, for all vs ∈ S.

The formula FDFT (G,S) is given by the conjunction of
all the clauses described above. Every model of this formula
induces a connected subgraph of G containing the vertices in
S. Since the smallest such subgraph is a (Steiner) tree, we can
reduce the Steiner Tree Problem to MaxSAT by defining soft
clauses that ensure the subgraph is minimized.

Kautz et al. suggested creating a boolean variable yi,j
for each edge {vi, vj} ∈ E and adding the soft clause
(¬yi, w({vi, vj})) to the formula. The variable yi,j states the
presence of (vi, vj) or (vj , vi) in the sequence. The relation-
ship between this variables and the ones previously defined
may be given by hard clauses, to be added to FDFT (G,S),
that describe both ways of the following relationship: yi,j ↔
(xi,j,1 ∨ ... ∨ xi,j,2|E| ∨ xj,i,1 ∨ ... ∨ xj,i,2|E|).

This encoding is classified as absolute because its variables
encode the exact positions the arcs occur in the sequence. It
is not straightforward to adapt this encoding to a relative one,
since an arc may appear more than once in the sequence, and
thus the position of its “next arc” may not be unique.

B. Absolute Path-based encoding

The DFT-based encoding codifies the existence of a min-
imal connected subgraph of the given graph. In our previous
work, we suggested to encode the same constraint by ensuring
the existence of paths between pair of vertices [1]. The Path-
based encoding is a new way to encode such existence.

First, given a graph G and two of its vertices va, vb ∈ V ,
let us create a formula FAPB(G, va, vb) that is satisfiable iff
there is a path between va and vb in G. This formula is used
as a subformula in the Path-based encoding.

A path from va to vb can be described with a sequence
of some of the vertices in the graph (v1 = va, v2, v3, ...,
vk−1, vk = vb), where k is the number of vertices in the path.
There must be an edge between vi and vi+1 for all 1 ≤ i < k.
Only the vertices present in the described path must occur in
the sequence. In the worst case, however, the path contains all
vertices, and the sequence has then all |V | vertices.

For each vertex vi ∈ V and for each position t, 1 ≤ t ≤
|V |, let us associate a boolean variable xi,t that states that vi
occurs at the position t of the sequence.

FAPB(G, va, vb) consists of the following clauses:

a. xa,1. This unit clause ensures that va occurs at the first
position of the sequence.

b. xb,2∨xb,3∨...∨xb,|V |. This clause ensures that xb occurs
in the sequence at some position.

c. For each vertex vi ∈ V, vi 6= vb and for each 1 ≤
t < |V |, xi,t → (xi1,t+1 ∨ xi2,t+1 ∨ ... ∨ xi|N(vi)|,t+1). These
|V |2− |V | clauses ensure that, if vi occurs at some position t

in the sequence and it is not vb, then one of its neighbors
follows it at position t + 1. This ensure that there is an
edge between adjacent vertices in the sequence, and thus the
sequence describes a valid path.

d. For each 1 ≤ t ≤ |V | and for each pair of distinct
vertices vi, vj ∈ V , xi,t → ¬xj,t. These |V |3 − |V |2 clauses
ensure that there is at most one vertex in each position of the
sequence.

e. For each vertex vi ∈ V and for each pair of positions
1 ≤ t < t′ ≤ |V |, xi,t → ¬xi,t′ . These O(|V |3) clauses ensure
that all vertices occur in the sequence at most once.

These clauses are sufficient to ensure that the sequence
describes a path from va to vb in the given graph. A vertex
vi ∈ V is present in the described path iff it occurs at some
position in the sequence, ie, iff xi,t is true for any 1 ≤ t ≤ |V |.

For each edge {vi, vj} ∈ E, let us associate two boolean
variables zi,j (zj,i) that state that vj (vi) is the successor of vi
(vj) in the sequence. These variables are true iff that edge is
present in the path being described.

Their relationship with the previously defined variables are
given by the following relation, to be converted to clauses to
be added to the formula: zi,j ↔ (xi,1 ∧ xj,2) ∨ (xi,2 ∧ xj,3) ∨
... ∨ (xi,|V |−1 ∧ xj,|V |). The relationship for variable zi,j is
analogous.

Once the formula FAPB(G, va, vb) is defined, we can use
it as a subformula to create a formula FAPB(G,S) whose
each model describes a connected subgraph of G containing
the vertices in S.

This construction is similar to the one suggested in our
previous work [1]. Let us define S′ = (vs1, vs2, ..., vs|S|) as an
arbritrary permutation of S. A subgraph containing all vertices
in S is connected iff it contains a path between each two
adjacent vertices in S′, ie, between vsg and vs(g+1), for all
1 ≤ g < |S|.

Let us consider |S|−1 graphs G1, ..., G|S|−1 which are all
identical to the original graph G. For each graph Gg, 1 ≤ g <
|S|, consider the formula FAPB(Gg, vsg, vs(g+1)), that states
that there is a path between vsg and vs(g+1) in graph Gg .
These formulae contain the boolean variables xi,t,g (zi,j,g),
whose meaning is identical to xi,t (zi,j), w.r.t. Gg .

The formula FAPB(G,S) is defined simply as the conjunc-
tion of these formulae, since the union of the paths described
by the models of these formulae results in a connected sub-
graph containing all vertices in S.

Soft clauses are then used to minimize the described
subgraph. For each edge {vi, vj} ∈ E, let us associate a
boolean variable yi,j that states that this edge is present
in the subgraph being described. The relationship between
this variables is encoded by hard clauses translating both
ways of the following relation, to be added to FAPB(G,S):
yi,j ↔ (zi,j,1 ∨ zj,i,1 ∨ zi,j,2 ∨ zj,i,2 ∨ ...zi,j,|S|−1 ∨ zj,i,|S|−1).
Like the DFT-based encoding, let us add an unit soft clause
(¬yi,j , w({vi, vj})) for each edge {vi, vj} ∈ E. These clauses
ensures the subgraph being described is minimal and thus is a
(Steiner) tree.



A relative version of this encoding is described in the next
section.

V. RELATIVE ENCODINGS

In this section we present relative encodings of trees in
graphs. We suggest a relative adaptation of the Path-based
encoding described in the previous section, and a new rela-
tive encoding, which we call Parental-based encoding. These
encodings are described next.

A. Relative Path-based encoding

The Absolute Path-based encoding can be adapted to a
relative one as Prestwich did to Hamiltonian paths [8].

Like the absolute encoding, let us build a formula
FRPB(G, va, vb) that is satisfiable iff there is a path between
va and vb in G, and define FRPB(G,S) as the conjunction of
|S| − 1 such formulae.

For each one of them, let us consider a sequence of vertices
(v1 = va, v2, v3, ..., vk−1, vk = vb) that describes a path
between va and vb, as shown in the previous section.

For each edge {vi, vj} ∈ E, let us associate two boolean
variables si,j (sj,i) that state that vj (vi) is the successor of
vi (vj) in the sequence. Also, for each pair of distinct vertices
vi, vj ∈ V , let us associate a boolean variable oi,j that states
that vi precedes vj in the sequence.

We build FRPB(G, va, vb) with the following clauses:

a. sa,a1 ∨ sa,a2 ∨ ... ∨ sa,a|N(va)| . This clause ensures that
va has a successor in the sequence.

b. For each vertex vi ∈ V and for each pair of distinct
vertices vj , vk ∈ N(vi), si,j → ¬si,k, and sj,i → ¬sk,i.
These O(|V |3) clauses ensure that no vertex has more than
one successor or one antecessor in the sequence.

c. For each vertex vi ∈ V with vi 6= vb, and for each vertex
vj ∈ N(vi), sj,i → (si,i1∨si,i2∨...∨si,i|N(vi)|). These O(|E|)
clauses ensure that, if a vertex vi has some antecessor vj in
the sequence, then it has a successor in it too, except when
vi = vb.

d. For each triple of distinct vertices vi, vj , vk ∈ V , (oi,j ∧
oj,k)→ oi,k. These O(|V |3) clauses encode the transitivity of
the preceding relationship.

e. For each pair of distinct vertices vi, vj ∈ V , oi,j →
¬oj,i. These |V |2 − |V | clauses encode the antisymmetry of
the preceding relationship.

f. oa,b. This unit clause ensures that va precedes vb in the
sequence.

g. For each pair of distinct vertices vi, vj ∈ V , si,j →
oi,j . These |V |2 − |V | clauses encode the natural relationship
between both types of variables.

These clauses are sufficient to encode a path between va
and vb in G. A vertex vi ∈ V is present in the described path
iff it has a successor or an antecessor in the sequence, ie, if
si,j or sj,i is true for any vj ∈ N(vi).

It is worth noticing that, unlike Velev&Gao’s encoding,
we cannot replace the variable oi,j by ¬oj,i when i > j, since

there may be vertices that are not present in the sequence at
all, and thus the relation between them is undefined. Hence,
oi,j and oj,i can both be false if vi and vj are not in the path.

Unlike the absolute version of this encoding, we do not
need to create a boolean variable zi,j for each {vi, vj} ∈ E
stating the fact that vj precedes vi in the sequence, since this
statement is given by the variable si,j already.

Once the formula FRPB(G, va, vb) is defined, we can again
use it as a subformula to create a formula FRPB(G,S) whose
models describe a connected subgraph of G containing the ver-
tices in S. This formula can be built with an arbritrary permu-
tation S′ of the elements in S, as described previously. Again,
we create a boolean variable yi,j for each edge {vi, vj} ∈ E
and add clauses to FRPB(G,S) that describe the relation
yi,j ↔ (si,j,1 ∨ sj,i,1 ∨ si,j,2 ∨ sj,i,2 ∨ ...si,j,|S|−1 ∨ sj,i,|S|−1),
as done in the Absolute Path-based encoding.

Finally, an unit soft clause (¬yi,j , w({vi, vj})) is added to
the formula for each {vi, vj} ∈ E, as done in all presented
encodings.

B. Parental-based encoding

All previously described encodings generate a formula
whose models describe a subgraph of a given graph. It becomes
a tree through MaxSAT minimization. We describe a new
encoding that encodes a tree directly with the hard formula.

Let us build a formula FPrB(G,S) whose models describe
a tree containing the vertices of S. This tree is rooted in an
arbritrary vertex vr ∈ S.

For each edge {vi, vj} ∈ E, let us associate two boolean
variables pi,j (pj,i) that state that vj (vi) is the parent of vi (vj)
in the tree. Also, for each pair of distinct vertices vi, vj ∈ V ,
let us associate a boolean variable ai,j that states that vj is
an ancestor of vi in the tree. We build FPrB(G,S) with the
following clauses:

a. For each vertex vs ∈ S with vs 6= vr, ps,s1 ∨ps,s2 ∨ ...∨
ps,s|N(vs)| . These |S| − 1 clauses state that every vertex in S,
except for the root, must have a parent in the tree;

b. For each vertex vi ∈ V with vi 6= vr and for each pair of
distinct vertices vj , vk ∈ N(vi), pi,j → ¬pi,k. These O(|V |3)
clauses state that no vertex has more than one parent.

c. For each vertex vi ∈ V with vi 6= vr and and for each
vertex vj ∈ N(vi) with vj 6= vr, pj,i → (pi,i1 ∨ pi,i2 ∨ ... ∨
pi,i|N(vi)|). These O(|E|) clauses state that, if the vertex vi is
not the root and has some child vj in the tree, then it must
also have a parent in it.

d. For each vertex vi ∈ V with vi 6= vr and for each vertex
vj ∈ N(vi), pi,j → ai,j . These O(|E|) clauses state the direct
relationship between the parent and ancestor relations.

e. For each triple of distinct vertices vi, vj , vk ∈ V , (ai,j ∧
aj,k) → ai,k. These O(|V |3) clauses encode the transitivity
relationship of the ancestor relation.

f. For each pair of vertices vi, vj ∈ V , ai,j → ¬aj,i. These
|V |2 − |V | clauses encode the antisymmetric relationship of
the ancestor relation.



g. For each vertex vs ∈ S, vs 6= vr, as,r. These |S|−1 unit
clauses encode the fact that vr must be an ancestral of all the
other vertices in S.

Given a model of this formula, a vertex vi is present in
the tree described by it iff it is the root or it has some parent
assigned to it, ie, pi,j is true, for some vj ∈ N(vi).

We also create a boolean variable yi,j for each edge
{vi, vj} ∈ E which is true iff that edge is in the described tree.
This variable is related to the other ones simply by the relation
yi,j ↔ (pi,j∨pj,i), where pi,j (pj,i) is removed if vi (vj) is the
root. As usual, there is a soft unit clause (¬yi,j , w({vi, vj})
for each edge {vi, vj} ∈ E.

It is worth mentioning that, again, we cannot replace the
variable ai,j by ¬aj,i when i > j, since the ancestor relation
does not describe a total order of the vertices: there may be
two vertices vi, vj ∈ V where vi is not an ancestor of vj nor
vj is an ancestor of vi.

VI. COUNTING-BASED ENCODINGS

Let us recall the idea suggested in our previous work to
reduce the Steiner Tree Problem to MaxSAT by creating some
subformulae that, given a graph G and two of its vertices
va, vb ∈ V , is satisfiable iff there is a path between va and vb
in G. The union of these paths results in a connected subgraph
of G, to be minimized thought MaxSAT minimization [1].

A path between va and vb in a graph G exists iff there
is a subgraph of G in which the degree of both va and vb is
exactly 1, and the degree of all other vertices is 0 or 2 [1].

Observing this, we suggested to associate a boolean vari-
able xi,j for each edge {vi, vj} ∈ E and create the hard
formula by using cardinality operators to count the degree
of each vertex in the subgraph described by a model of the
formula. Previously, we suggested to translate these cardi-
nality operators to CNF by using recursive counters shown
by Muller&Preparata [12]. In this paper, we call this known
encoding the Recursive-Counter-based one.

These operators can also be translated Pseudo-Boolean
(PB) constraints, which consists of 0− 1 linear programming
equations. The constraints that encode a subgraph of G con-
taining a path between va and vb are:

a. xa,a1 + xa,a2 + ...+ xa,a|N(va)| = 1 and xb,b1 + xb,b2 +
...+ xb,b|N(vb)| = 1. These constraints state that the degree of
both va and vb must be equal to 1.

b. For each xi ∈ V \ {xa, xb}, (xi,i1 + xi,i2 + ... +
xi,i|N(vi)| = 0) ∨ (xi,i1 + xi,i2 + ... + xi,i|N(vi)| = 2). These
constraints state that the degree of all other vertices must be
equal to 0 or 2.

We can rewrite these constraints to use only the ≤ operator.
The constraint related to va can be rewritten as (xa,a1+xa,a2+
...+xa,a|N(va)| ≤ 1) ∧ (¬xa,a1 +¬xa,a2 + ...+¬xa,a|N(va)| ≤
|N(va)| − 1). The one related to vb is analogous. In a similar
way, every constraint of the form xi,i1+xi,i2+...+xi,i|N(vi)| =
2 can be rewritten as (xi,i1 + xi,i2 + ... + xi,i|N(vi)| ≤ 2) ∧
(¬xi,i1 +¬xi,i2 + ...+¬xi,i|N(vi)| ≤ |N(vi)|−2). Finally, the
constraint xi,i1 + xi,i2 + ... + xi,i|N(vi)| = 0 can simply be
replaced by xi,i1 + xi,i2 + ...+ xi,i|N(vi)| ≤ 0.

Instead of using counters, we now suggest translating
these PB constraints to CNF by creating a Reduced Ordered
Binary Decision Diagram (ROBDD) for each one, which is
a canonical representation of a boolean function. We call
this encoding the ROBDD-based one. For a background on
ROBDDs, the reader may refer to [13].

For each constraint, we create an equivalent ROBDD as
suggested by Abio et al. [13]: Given a total order of the
variables present in the constraint, we generate an Ordered
BDD whose root node represents the constraint itself, and the
two child of a node represent the propagation of the respective
truth value of the variable in its level in the constraint. We then
remove irrelevant nodes and similar subgraphs, generating an
unique ROBDD for each constraint.

Abio et al. show that, since all coefficients in all PB
constraints are equal to the power of two 20 = 1, the ROBDD
that describes the constraint relative to vi contains only
O(|N(vi)|2) nodes. Also, since PB constraints are monotonic
functions, we can translate their respective ROBDDs to CNF
by creating only one new variable and two clauses per node.
Consider a node of a ROBDD to be represented by the variable
ys. If its selector variable is xs, its false child is represented
by the variable fs, and its true child is represented by the
variable ts, then the node can be encoded with the following
two clauses: ¬fs → ¬ys, and (¬ts ∧ xs)→ ¬ys [13].

The variables representing the root of each ROBDDs are
then used to compose the entire formula. Given this formula
that codifies a path between vertices in the graph, the resulting
MaxSAT instance is built as with the Path-based encodings.

VII. EXPERIMENTAL RESULTS

We implemented all encodings described in this paper,
except for the Recursive-Counter-based one, whose source
code was made available previously. Our implementations can
be downloaded at http://www.inf.ufpr.br/rtoliveira/.

We encoded random instances of the Steiner Tree Problem
and some instances from the SteinLib benchmark [10]. They
were then solved by MiniMaxSAT [2] on a AMD Opteron(tm)
Processor 6136, 2.4 Ghz, 120 Gb RAM, Linux 3.11.10.

Tables I and II show the time taken by the solver to solve
each instance, in seconds. The columns DFT, APB, RPB, PrB,
RC and ROBDD indicate the DFT-based, Absolute Path-based,
Relative Path-based, Parental-based, Recursive-Counter-based
and ROBDD-based encodings, respectively. The value TLE
(Time Limit Exceeded) indicates that the instance was not
solved within 1800 seconds.

In table I, each instance V |E|S is a random weighted
graph with V vertices, E edges and S terminals. In table II,
the column V |E|S describes the size of each instance. None
of these instances were solved within the given time limit
using the DFT-based encoding. Hence, the column DFT was
omitted from this table.

By analyzing the results, it is possible to notice that the
DFT-based encoding is the least efficient one. It is worth
mentioning, however, that its authors suspected this encoding
would indeed not be practical [3].



TABLE I. EXPERIMENTAL RESULTS FOR RANDOM INSTANCES

Instance DFT APB RPB PrB RC ROBDD
10|23|4 17.21 0.83 0.01 0.00 0.02 0.01
10|23|5 1052.31 7.72 0.27 0.08 0.10 14.90
11|28|5 TLE 1.01 0.36 0.01 0.18 0.03
12|33|6 TLE 3.03 3.12 0.33 1.09 0.15
15|35|8 TLE 1243.84 168.85 1.02 4.63 101.80
20|45|13 TLE TLE TLE 4.77 196.98 TLE
25|54|15 TLE TLE TLE 1.19 742.90 TLE
30|70|17 TLE TLE TLE 265.48 TLE TLE

TABLE II. EXPERIMENTAL RESULTS FOR INSTANCES FROM STEINLIB

Instance V |E|S APB RPB PrB RC ROBDD
b01 50|63|9 TLE 76.70 2.80 0.37 18.33
b02 50|63|13 TLE 1082.63 3.63 26.58 554.63
b03 50|63|25 TLE TLE 2.57 13.52 1233.80
b07 75|94|13 TLE TLE 97.90 59.66 653.11
b08 75|94|19 TLE TLE 55.63 TLE TLE

i080-001 80|120|6 TLE TLE TLE 221.91 TLE
i080-002 80|120|6 TLE TLE TLE 2.02 703.87
i080-003 80|120|6 TLE TLE TLE 279.29 TLE
i080-004 80|120|6 TLE TLE TLE 218.62 TLE
es20fst03 27|26|20 1.50 3.56 0.02 0.01 0.02
es20fst06 29|28|20 1.66 5.47 0.03 0.01 0.03
es20fst07 45|59|20 TLE TLE 22.72 1037.00 TLE
es20fst09 36|42|20 TLE 445.77 0.46 3.09 157.60
es20fst11 33|36|20 100.39 26.53 0.12 0.02 0.31
es30fst07 53|64|30 TLE TLE TLE 57.82 TLE
es30fst09 43|44|30 TLE 1212.11 0.82 0.11 28.38
es30fst10 48|52|30 1199.07 301.70 0.51 0.58 105.06
es30fst12 46|48|30 296.67 238.64 0.20 0.02 2.66

Also, we can observe that relative encodings are, overall,
more efficient than absolute ones. This could be due the fact
that relative encodings explicitly codifies how the vertices are
related to each other, and not related to a fixed structure.
In this sense, relative encodings may contain more relevant
information than absolute ones, since paths and trees can be
described by the structure these relationships represent.

Surprisingly, the Recursive-Counter-based encoding
showed to be, overall, more efficient than the ROBDD-based
one. It is believed that encodings of adders and counters
have weak propagation properties due to excessive use of
XOR gates. Also, the ROBDD-based encoding has stronger
proprieties, like being generalized arc-consistent: if some
variable must be set to false in order to satisfy a formula,
then the solver’s unit propagation procedure will assign such
value [13]. We suspect the decomposition of each cardinality
operator to at most three PB constraints may have influenced
the efficiency of this encoding.

We can also notice that there is not an overall best encoding
among the ones we described. The Parental-based encoding
showed to be the most efficient encoding for some instances,
while the Recursive-Counter-based one showed to be the most
efficient for some others, such as the I080 class of instances
from SteinLib. We suspect there are graphs with specific
properties that make an encoding more efficient than another.

VIII. CONCLUSION AND FUTURE WORK

In this paper we reviewed two known encodings for trees
and suggested four new ones. We described two absolute

encodings, two relative encodings and other two counter-
based encodings. Our experimental results strongly suggest
that relative encodings are more efficient than absolute ones.

As noticed, there was not an overall best encoding among
the ones we described. The Recursive-Counter-based encoding
showed to be more efficient than the Parental-based one for
some instances from SteinLib. As future work, we suggest
to characterize these instances to extract their properties that
make them easier to solve with a specific encoding. Knowing
these characteristics, one can, for instance, create a heuristic
to choose the encoding to be used to solve a given instance.
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