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Abstract. In [1] it was presented some MaxSAT encodings for trees
in graphs which can be used to solve the Steiner Tree Problem. In this
paper we focus exclusively on the relative encoding which was called
Parental-based. We review this encoding and improve it by applying two
techniques. One of them is a known improvement to encode transitivity,
previously used for other relative encodings. The other one consists on
deducing unit clauses from the dominance relation of the given graph.
Finally, we use the improved encodings to solve relevant instances, and
present experimental results.
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1 Introduction

The efficiency of SAT and MaxSAT solvers has grown in the last decades. This
motivates solving relevant problems by encoding them to (Max)SAT and pro-
viding the resulting formulae as input to state-of-art (Max)SAT solvers.

Many encodings of relevant problems are known [1–4]. In this paper, we focus
on an encoding for the Steiner Tree Problem. This problem is known to be NP-
Hard [5], and has applications, for instance, in Computational Geometry and
Circuit Design [6].

Previously, it was presented different MaxSAT encodings for the Steiner Tree
Problem [1], which were classified as absolute, relative or counting-based. In this
paper, we review and improve the relative Parental-based encoding, the most
efficient encoding among the relative ones presented previously.

We apply two improvements on this encoding. One of the procedures we use
to improve the encoding was previously used by Bryant & Velev [3] and Velev
& Gao [4] to encode transitivity for other problems. The other one consists on
using the dependence relation of the given graph to deduce unit clauses.

This paper is organized as follows: Section 2 provides preliminary definitions
and notations. Section 3 provides a brief background on SAT and MaxSAT
encodings for problems in graphs. Section 4 reviews the Parental-based encoding.
Section 5 presents the first improvement on the encoding, while section 6 presents
the second one. Finally, section 7 shows experimental results, while section 8
concludes and present future works.



2 On a Relative MaxSAT Encoding for the Steiner Tree Problem in Graphs

2 Preliminaries

In this section we present some preliminaries notions and definitions. First, the
Steiner Tree Problem consists in, given a weighted graph G = (V,E,w : E →
N+) and a set of vertices S ⊆ V (the terminal vertices), find a connected sub-
graph of G containing all terminal vertices whose sum of the weight of its edges
is minimized. Such subgraph is clearly a tree.

A (Boolean) variable can assume either 0 (false) or 1 (true). A literal is a
variable xi or its negation ¬xi. A clause is a disjunction (∨) of literals. The
expression A → B denotes (¬A) ∨ B, which always results in a clause in this
text. An unit clause is a clause containing exactly one literal, and an empty
clause is a clause containing no literals, which is always evaluated to 0 (false).
A Conjective Normal Form (CNF) formula is a conjunction (∧) of clauses.

An assignment is a set of literals where a variable and its negation do not
occur simultaneously in it. Given a CNF formula, an assignment A is total if
xi ∈ A or ¬xi ∈ A for all variable xi occurring in the formula, and partial
otherwise. An assignment A is an extension of a partial assignment A′ (or,
equivalently, A′ can be extended to A) if A′ ⊂ A. An assignment A satisfies
a clause C if there is a literal in both the assignment A and the clause C. An
assignment satisfies a CNF formula if it satisfies all its clauses. A total assignment
that satisfies a CNF formula is a model of it. The Boolean Satisfability Problem
(SAT) consists in, given a CNF formula, decide whether it has a model.

Unit Propagation is a procedure used by most state-of-the-art SAT solvers
to simplify a CNF formula [7, 8]. If a given CNF formula contains an unit clause
(xi) (resp. (¬xi)), then the procedure propagates the literal xi (resp. ¬xi) in the
formula, i.e., it replaces each occurrence of the variable xi by 1 (true) (resp. 0
(false)). The procedure is repeated until the formula does not contain any unit
clause or contains an empty clause.

Let A be a partial assignment (possibly empty) which can be extended to a
model of a given CNF formula, and consider that all literals in A are propagated
in such formula. The resulting formula is Generalized Arc-Consistent (GAC) if
there is not a variable xi such that: (i)A∪{¬xi} can be extended to a model of the
formula; (ii) A∪{xi} can not be extended to a model of the formula; (iii) ¬xi /∈ A.
Informally, the formula is GAC if all variables that must be set to 0 (false) to
make the formula satisfiable are present in the current partial assignment, and
thus are not present in the resulting formula at all. Also, the given formula is
maintained GAC by Unit Propagation if the literal ¬xi is propagated by such
procedure, for all variable xi such that A ∪ {¬xi} can be extended to a model
of the formula, but A ∪ {xi} can not, for all such partial assignments A during
the search.

The Partial Weighted Maximum Boolean Satisfability Problem
((PW)MaxSAT) consists in, given a CNF formula Fh (the hard formula), a
set of clauses Fs (the soft clauses), and a function W : Fs → N+ (the weight
or cost of each soft clause), find a model of the hard formula whose sum of the
weight of the satisfied soft clauses is maximized. Unit Propagation can also be
used by MaxSAT solvers to simplify the hard formula [9].
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Finally, given a graph G = (V,E), we denote by N(vi) = {vj ∈ V |{vi, vj} ∈
E} the set of neighbors of a given vertex vi.

3 Background

In this section we give a brief background about SAT and MaxSAT encodings
for problems in graphs.

There is more than one way to reduce a given problem to SAT or MaxSAT. A
possible way to do so is by describing the problem as a Constraint Satisfiability
Problem (CSP) and then encode its constraints into CNF formulae. These en-
codings are referred as absolute encodings. This notation was used by Prestwich
[2] to describe an encoding for the Hamiltonian Cycle Problem. In his encodings,
a permutation of the vertices in the given graph, which described the path, is
encoded. In the absolute encoding, there is a boolean variable for each vertex in
the given graph and each position of the permutation. Many distinct absolute
encodings can be used, such as the direct, muldirect, and log encodings. For a
review of these encodings, the reader may referrer to Velev [10].

For some problems, one can describe the problem as a binary relation instead
of a CSP. The encodings that describe a binary relation are referred as relative
encodings. This notation was also used by Prestwich [2] to describe another
encoding for the Hamiltonian Cycle Problem. In this encoding, each boolean
variable states the relative positions, in the described permutation, between ver-
tices in the given graph.

In relative encodings, it is usually necessary to describe a transitive relation.
The transitivity property can naturally be encoded by a cubic number of clauses
in the form (ra,b ∧ rb,c) → ra,c, where ra,b states the relation between elements
a and b. Bryant & Velev [3] suggested an improvement for this property in par-
ticular. Velev & Gao [4] then improved Prestwich’s encoding. This improvement
is shown in section 5 applied to the Parental-based encoding.

Previously [1], it was presented, among others, two relative encodings for the
Steiner Tree Problem to (PW)MaxSAT. In this work, we focus on the Parental-
based encoding. The encoding describes the partial (binary) relation induced by
a tree in the given graph. This encoding is reviewed in the next section.

4 The Parental-based encoding

In this section we review the Parental-based encoding. Given a graph G = (V,E)
and a set of its vertices S ⊆ V , the Parental-based encoding creates a hard
formula FPrB(G,S) which is satisfiable if and only if all verticies in S are in the
same connected component of G [1]. Also, each model of FPrB(G,S) describes
a tree in G containing all vertices in S. To solve the Steiner Tree Problem, soft
clauses are then created to minimize such tree [1].

The encoded tree is rooted in an arbitrary terminal vertex vr ∈ S. The root of
the tree is chosen among the terminal vertices during a pre-processing step. We
suggest seven heuristics to select such vertex: (1) Select the first terminal vertex
in the input file; (2) Select a terminal vertex with maximum degree. Break ties
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by selecting the first such vertex in the input file; (3) Select a terminal vertex
with maximum degree. Break ties by randomly selecting one such vertex; (4)
Select a terminal vertex with minimum degree. Break ties by selecting the first
such vertex in the input file; (5) Select a terminal vertex with minimum degree.
Break ties by randomly selecting one such vertex; (6) Select a terminal vertex
whose average distance to all others terminal vertices is minimum. Break ties by
randomly selecting one such vertex; (7) Select a terminal vertex whose average
distance to all others terminal vertices is maximum. Break ties by randomly
selecting one such vertex. One can use the Floyd-Warshall algorithm [11] to
compute the distances used by heuristics 6 and 7.

The formula FPrB(G,S) is built as follows [1]: for each edge {vi, vj} ∈ E, two
boolean variables pi,j and pj,i are created. The variable pi,j (resp. pj,i) states
that vj (resp. vi) is the parent of vi (resp. vj) in the described tree.

Also, two other boolean variables ai,j and aj,i are created for each pair of
distinct vertices vi, vj ∈ V . The variable ai,j (resp. aj,i) states that vj (resp. vi)
is an ancestor of vi (resp. vj) in the described tree. It is worth noticing that
variables pi,j encode a binary relation P over the vertices of the given graph,
while variables ai,j encode its transitive closure P+.

Finally, another boolean variable yi,j is created for each edge {vi, vj} ∈ E.
The variable yi,j states that the edge {vi, vj} is present in the described tree.

The hard formula FPrB(G,S) contains eight types of clauses:

(terminal-presence) ( ∨
vj∈N(vs)

ps,j) for each vs ∈ S, vs 6= vr. These clauses

ensure that all terminal vertices, except for the root, must have a parent in the
tree, and thus are present in the described subgraph;

(at-most-one-parent) (pi,j → ¬pi,k) for each vi ∈ V, vi 6= vr and for each pair
of distinct vertices vj , vk ∈ N(vi). These clauses ensure that no vertex has more
than one parent in the tree;

(connectedness) (pj,i → ∨
vk∈N(vi)

pi,k), for each vi ∈ V, vi 6= vr and for each

vj ∈ N(vi), vj 6= vr. These clauses ensure that, if a given vertex has a parent in
the tree, then its parent also has a parent in such tree, except for the root;

(subset) (pi,j → ai,j) for each vi ∈ V, vi 6= vr and for each vj ∈ N(vi). These
clauses state that if a vertex is the parent of another vertex in the tree, then it
is also one of its ancestors. This encodes P ⊆ P+;

(transitivity) ((ai,j∧aj,k)→ ai,k) for each triple of distinct vertices vi, vj , vk ∈
V . These clauses encode the transitivity of the ancestor relation P+;

(asymmetry) (ai,j → ¬aj,i) for each pair of distinct vertices vi, vj ∈ V . These
clauses state that the ancestor relation P+, and thus also the parental relation
P , is asymmetric;

(root-path) (as,r) for all vs ∈ S, vs 6= vr. These unit clauses state that the
root of the tree is an ancestor of all other terminal vertices;

(edge-vertex-relation) (yi,j ↔ (pi,j∨pj,i)) = (yi,j → (pi,j∨pj,i)), (pi,j → yi,j)
and (pj,i → yi,j), for each edge {vi, vj} ∈ E. These clauses state that an edge is
present in the tree iff one of its vertices is the parent of its other one.
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Finally, an unit soft clause (¬yi,j) with weight w({vi, vj}) is created for each
edge {vi, vj} ∈ E, stating that the sum of the weights of the edges in the tree
must be minimized.

This encoding creates O(|V |2) boolean variables, O(|V |3) hard clauses and
|E| soft clauses. The total number of literals in both the hard and soft clauses
is also in O(|V |3). Asymptotically, this encoding creates the smaller number of
variables, clauses and literals among the Path-based encodings presented in [1].
Also, it is worth noticing that the largest portion of the instance is due the
encoding of the transitivity property, which requires a cubic number in |V | of
hard clauses. In the next section we present an improvement on this part of the
formula in particular.

It is also worth observing that a model A of the hard formula may describe
a subgraph G′(A) containing more vertices and edges than the ones presented
in the described tree. These elements are removed from the solution exclusively
via MaxSAT optimization.

5 An improvement on the transitivity relation

As previously stated, this encoding creates a hard formula with O(|V |2) vari-
ables, O(|V |3) clauses and O(|V |3) literals in total, and |E| unit soft clauses.

The number of variables and clauses in the hard formula can be reduced
using a method described by Bryant & Velev [3] and applied to the Hamiltonian
Cycle Problem by Velev & Gao [4]. Their method is based on the fact that the
transitive relation between some pairs of vertices is not directly relevant to the
solution, and thus some variables may be omitted from the formula.

Let us define the relational graph as the graph GR = (V,E ∪ {{vr, vs}|vs ∈
S, vs 6= vr}), i.e., GR is the graph G with additional edges connecting the root vr
and all other terminal vertices in S (if not present already). Instead of defining
variables ai,j and aj,i for each pair of distinct vertices vi, vj ∈ V , we define these
variables only for each pair of vertices where {vi, vj} ∈ E(GR). In practice, we
remove from the encoding the variables that originally occur in the transitivity
and asymmetry clauses only. These variables are not directly relevant to the
encoding and their values could be inferred from other variables in the solution.

Transitivity can then be encoded by enumerating all chord-free cycles in GR,
as suggested by Bryant & Velev [3]. For each chord-free cycle with k vertices,
k clauses are added to the formula. Each clause states the relation between the
vertices in one edge and the vertices in all the other edges in the cycle.

As also suggested by Bryant & Velev [3], the transitivity property can be
encoded efficiently if every chord-free cycle in GR is a triangle with 3 vertices,
i.e., if GR is chordal. If GR is not chordal, it is possible to add a set of edges
(called a fill) to the graph to make it chordal. It is NP-Hard to obtain a fill with
the smallest possible number of edges [12]. However, some heuristics can be used
to obtain a “good” set of edges.

Velev & Gao [4] presented the following procedure to obtain such a set:
Let G+ be a graph initially equal to GR, and let F be an initially empty set.
Select a vertex vi ∈ G+ and, for each pair of distinct vertices vj , vk such that
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{vi, vj} ∈ E(G+) and {vi, vk} ∈ E(G+), add the edge {vj , vk} to both the set F
and the graph G+, if not present already. Then, remove the vertex vi and all its
incident edges from G+. Repeat the procedure until G+ is empty. At the end,
include all edges in F to GR to make it chordal [4].

Twelve heuristics to choose a vertex at each step are known [4]: (1) Select
a vertex in G+ with minimum degree. Break ties by selecting the vertex whose
sum of the degrees of its neighbors is minimum; (2) Select a vertex in G+ with
minimum degree. Break ties by selecting the vertex whose sum of the degrees
of its neighbors is maximum; (3) Select a vertex in G+ with minimum degree.
Break ties by selecting the vertex whose number of edges to be added at that
step of the procedure, if that vertex is selected, is minimum; (4) Select a vertex
in G+ with minimum degree. Break ties by selecting the vertex whose number
of edges to be added at that step of the procedure, if that vertex is selected,
is maximum; (5) Select a vertex in G+ with minimum degree. Break ties by
selecting one such vertex whose degree in GR is minimum; (6) Select a vertex in
G+ with minimum degree. Break ties by selecting one such vertex whose degree
in GR is maximum; (7) Select a vertex in G+ with minimum degree. Break ties
by selecting the vertex that, if selected, minimizes the number of triangles, in
the graph given by the union of GR with the edges currently in F , containing
the selected vertex and some edge in F ; (8) Select a vertex in G+ with minimum
degree. Break ties by selecting the vertex that, if selected, maximizes the number
of triangles, in the graph given by the union of GR with the edges currently in
F , containing the selected vertex and some edge in F ; (9) Select a vertex in G+

that, if selected, minimizes the number of edges to be added to G+ at that step
of the procedure. Break ties by selecting the first such vertex in the input file;
(10) Select a vertex in G+ that, if selected, minimizes the number of edges to be
added to G+ at that step of the procedure. Break ties by randomly selecting one
such vertex; (11) Select a vertex to G+ that, if selected, minimizes the number
of triangles, in the graph given by the union of GR with the edges currently in
F , containing the selected vertex and some edge in F . Break ties by selecting
the first such vertex in the input file; (12) Select a vertex to G+ that, if selected,
minimizes the number of triangles, in the graph given by the union of GR with
the edges currently in F , containing the selected vertex and some edge in F .
Break ties by randomly selecting one such vertex. For all heuristics, if not stated
otherwise, if there are still ties, break it by selecting the first vertex in the input
that matches the given criteria.

We define variables ai,j and aj,i only for pairs of vertices vi, vj ∈ V that are
adjacent in GR. Also, a transitivity clause ((ai,j ∧ aj,k) → ai,k) is added only
when all variables ai,j , aj,k and ai,k are defined. Since GR is chordal, a transitivity
clause is created for each triangle in this graph. The number of triangles in GR
may be way smaller than the number of transitivity clauses created in the original
encoding, which is near to |V |3.

Finally, a asymmetry clause (ai,j → ¬aj,i) is also added only when the vari-
ables ai,j and aj,i are defined. The number of asymmetry clauses created is equal
to the number of edges in GR, which is in O(|E| + |S| + |F |), the sum of the
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number of edges in the original graph, the number of edges connecting the root
to all terminal vertices, and the number of edges in F .

As stated by Bryant & Velev [3], this improvement can be applied without
invalidating the correctness of the transitivity encoding. Indeed, the solutions
found during our experiments are all optimal according to benchmark descrip-
tions and previous experiments.

6 On deducing unit clauses from the dominance relation

In this section we suggest another improvement on the Parental-based encoding.

It is possible to anticipate a truth value for some variables before starting
the MaxSAT solver by analyzing the input graph. Informally, this improvement
consists on deducing unit clauses based on the original problem and the meaning
of the variables in the encoding.

Let G′ = (V,E′) be the directed graph obtained by replacing each edge in the
original graph G by two directed arcs, i.e., E′ = {(vi, vj), (vj , vi)|{vi, vj} ∈ E}.
Also, let vr be the terminal vertex selected to be root of the encoded tree, as
defined in section 4.

The dominator tree D of G′ w.r.t. vr is a tree rooted at vr such that, if a
vertex vi is an ancestor of a vertex vj in D, then every path from vr to vj in
G contains the vertex vi [13]. Hence, if vi is an ancestor of vj in D, then it not
possible to obtain a tree in G such that vj occurs before vi in a path starting in
vr. Thus, vj cannot be an ancestor of vi in the described tree, so we can deduce
that the variable ai,j , if defined, must be set to 0 (false). In this case, we create
the unit clause (¬ai,j) and add it to the hard formula.

If the vertex vj is present in the tree described by a model of the hard formula,
then the literal aj,i is certainly present in such model. However, there is a model
containing aj,i even if the vertex vj is not present in the encoded tree. Notice
that the subset clause (pj,i → aj,i) is satisfied in this case even if pj,i is set to 0
(false). Hence, it is also possible to add the unit clause (aj,i) to the formula.

We use the Lengauer-Tarjan algorithm [13] to build the dominator tree. Then,
for each pair of vertex vi, vj such that vi is an ancestor of vj in the dominator
tree and the variables ai,j and aj,i are defined, we add the unit clauses (¬ai,j)
and (aj,i) to the hard formula. These literals will be propagated by the Unit
Propagation procedure as the solver starts.

It is worth mentioning that the addition of the unit clause (¬ai,j) makes
Unit Propagation propagate the literal ¬pi,j (if defined), due to the subset clause
(pi,j → ai,j). In fact, we conjecture that, with this improvement, Unit Propaga-
tion makes the hard formula Generalized Arc-Consistent (GAC), i.e., if there is
any variable that must be set to 0 (false) in order to make the formula satisfied,
then Unit Propagation will propagate such assignment. However, this fact may
be valid only for the formula given as input to the solver – GAC is not main-
tened by Unit Propagation during the search. This maintenance is discussed as
a future work in section 8.
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It is also worth noticing that, although we applied this technique on the
Parental-based encoding in particular, this improvement may actually be applied
on any relative encoding that encodes the transitivity property.

7 Experimental Results

In this section we present some experimental results obtained by solving relevant
instances of the Steiner Tree Problem using the presented encoding.

We used the encoding to reduce some random instances of the Steiner Tree
Problem and instances from the SteinLib benchmark [6]. The random instances
used in our experiments, namely 20 45 13, 25 54 15, 30 70 17 and 35 98 19, as
well as all source codes of all tools used in this paper, can be downloaded at
http://www.inf.ufpr.br/rtoliveira/.

To efficiently encode a given instance of the problem, it is needed to determine
(i) the root vr of the encoded tree and (ii) the vertex to be selected at each step
of the procedure used to make GR chordal, presented in section 5. We consider
seven heuristics for the selection of the root and twelve for the selection of such
vertex, as presented in sections 4 and 5.

First, we encoded the instances with the improvement on the transitivity
property using all combinations of both heuristics. We then compared the size of
the resulting formulae against the size of the formulae obtained by the Parental-
based encoding as-is, i.e., as presented in [1].

Table 1 shows the results. The column PrB stands for the Parental-based
encoding as-is, while IPrB stands for the improved version of the encoding,
with the improvement on the transitivity property. Columns Vars indicate the
number of variables in the formulae, while columns Claus indicate the number
of clauses in them. The columns h(i) and h(ii) indicate which heuristic to (i)
select the root and (ii) select the vertex at each step of the procedure resulted
in the smaller number of variables and clauses in the formulae.

Table 1. Size of the formulae generated by the encodings

Encoding PrB IPrB
Instance Vars Claus Vars Claus h(i) h(ii)
20 45 13 511 7750 279 1543 3 1
25 54 15 758 14920 382 2371 7 2
30 70 17 1076 25937 507 3670 2 2
35 98 19 1480 41663 743 7035 7 2
i080-001 6673 497740 817 4246 1 2
i080-002 6676 497772 860 4766 3 2
i080-003 6672 497736 840 4368 1 2
i080-004 6674 497768 858 4870 1 10
i080-005 6677 497732 904 5487 2 2

Encoding PrB IPrB
Instance Vars Claus Vars Claus h(i) h(ii)
es30fst01 6505 479011 879 3897 3 3
es30fst02 5259 346623 712 2828 7 3
es30fst03 7162 556189 904 3994 3 10
es30fst04 6664 497572 872 3767 7 3
es30fst05 3517 187649 531 1957 2 3
es30fst07 2946 142714 464 1638 2 2
es30fst08 4968 317846 676 2584 7 10
es30fst09 1937 75471 310 936 2 1
es30fst10 2411 105526 355 1081 3 2
es30fst11 6496 478955 858 3739 3 10
es30fst12 2213 92691 321 928 2 1
es30fst13 4410 265192 630 2471 2 10
es30fst14 2929 142638 389 1177 2 2

As expected, this improvement on the encoding reduced the size of the re-
sulting formulae. For the instance i080-001, the number of variables was reduced
by aprox. 8 times, while the number of clauses was reduced by aprox. 117 times.
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It is also worth noticing that the selections 2, 3 and 7 showed to be the best
heuristics overall to choose the root of the tree.

We then encoded all instances: with the improvement on the transitivity
property only; with the improvement on deducing unit clauses only; and with
both improvements. In the cases where the first improvement applies, we con-
sidered all 12 heuristics to choose the vertex to be selected at each step of the
procedure, and the heuristics 2, 3 and 7 to select the root of the tree. In the
case where only the second improvement applies, we used the heuristic 1 to se-
lect the root of the encoded tree, as implemented by [1]. The resulting formulae
were given as input to MaxSAT solvers MiniMaxSAT (minimaxsat1.0) [9] and
EvaSolver (eva500a__) [14]. We then ran the solvers on an AMD Opteron(tm)
Processor 6136, 2.4 Ghz, 120 Gb RAM, Linux 3.16.7.

Table 2 shows the best obtained results. PrB stands for the Parental-based
encoding as-is; IPrB stands for the improved version of the encoding, with the
improvement on the transitivity property only; UPrB stands for the improved
version with deduced unit clauses only; UIPrB stands for the encoding improved
by both improvements. In the cases where the first improvement applies, each
instance was encoded 10 times for each combination of heuristics. Column CPU
indicates the average CPU time took by the solver in seconds, while column σ
indicates its standard deviation. TLE (Time Limit Exceeded) indicates that the
given formula was not solved within 1800 seconds. The symbol ∗ indicates that
there was not an unique best combination of heuristics for that instance.

Let us first analyze the results obtained by the improvement on the tran-
sitivity property only (IPrB). As it can be observed, except for isolated cases,
this improvement on the encoding impacted significantly on the run time taken
by solvers to solve the obtained formulae. Indeed, some instances previously un-
solved by MiniMaxSAT with the Parental-based encoding, such as the ones in
the class I080, can be solved with the improved encoding by the same solver.

It is also worth observing that the combination of heuristics that generates
the smaller formulae is not necessarily the combination that generates the easier
formulae. It is also interesting noticing that there is not an overall best MaxSAT
solver to solve these instances. EvaSolver performed better than MiniMaxSAT
for some instances, mainly for the class ES30FST, while MiniMaxSAT performed
better than EvaSolver in others. This may indicate there is a relation between
the instances’ characteristics and the internal algorithms and heuristics used by
the solvers.

Let us then analyze the results obtained by the improvement by deducing
unit clauses only (UPrB). We expected this improvement to make the formulae
easier to solve. Surprisingly, although this improvement did make the solvers
solve specific instances faster, it did not improved their overall run time. In fact,
this improvement made some instances actually harder to be solved.

To help us to investigate this fact, we combined the second improvement with
the 12× 3 = 36 combinations of heuristics used for the experiments for the first
improvement, and analyzed the cases where the second improvement made the
resulting formulae easier or harder to solve.
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Table 2. Best results for both solvers with the first improvement, with the second one
and with both

Encoding PrB IPrB UPrB UIPrB
CPU CPU σ h(i) h(ii) CPU CPU σ h(i) h(ii)

Solver MiniMaxSAT [9]
20 45 13 4.77 0.64 0.00 7 2 6.97 0.78 0.00 7 3
25 54 15 1.19 0.68 0.00 3 5 6.06 0.56 0.00 2 2
30 70 17 265.48 18.28 0.00 2 1 273.88 12.92 0.00 7 1
35 98 19 TLE TLE - - - TLE TLE - - -
es30fst01 TLE TLE - - - TLE TLE - - -
es30fst02 TLE TLE - - - TLE TLE - - -
es30fst03 TLE TLE - - - TLE TLE - - -
es30fst04 TLE TLE - - - TLE TLE - - -
es30fst05 TLE 35.71 0.00 7 2 TLE 23.01 0.00 7 2
es30fst07 TLE 1.20 0.00 2 3 TLE 0.95 0.00 2 4,5
es30fst08 TLE TLE - - - TLE TLE - - -
es30fst09 0.82 0.01 0.00 * * 0.33 0.01 0.00 * *
es30fst10 0.52 0.01 0.00 * * 0.32 0.01 0.00 * *
es30fst11 TLE TLE - - - TLE TLE - - -
es30fst12 0.20 0.00 0.00 * * 0.33 0.00 0.00 * *
es30fst13 TLE 502.12 1.03 2 2 TLE 17.77 0.00 2 6
es30fst14 0.75 0.00 0.00 * * 0.47 0.00 0.00 * *
i080-001 TLE 765.94 1.5 2 1 1292.42 272.99 0.45 2 6
i080-002 TLE 281.10 0.55 2 9 920.36 250.42 1.33 2 6
i080-003 TLE 90.97 0.17 2 5 TLE 205.42 0.46 2 7
i080-004 TLE 197.70 0.46 2 2 TLE 101.05 0.20 2 6
i080-005 TLE 1146.93 5.08 2 9 TLE 304.91 0.38 3 2
Solver EvaSolver [14]

20 45 13 87.74 2.55 0.00 7 9 150.01 5.77 1.20 7 10
25 54 15 13.81 0.22 0.00 * * 1.27 0.24 0.00 7 6
30 70 17 TLE TLE - - - TLE TLE - - -
35 98 19 1128.26 135.55 3.63 7 4 955.81 236.30 17.34 7 4
es30fst01 TLE 1698.69 31.18 2 5 TLE TLE - - -
es30fst02 172.47 10.33 0.00 7 5 160.05 13.05 0.33 7 5
es30fst03 1392.26 23.06 0.14 7 2 896.13 20.34 0.20 7 4
es30fst04 TLE 662.33 6.30 2 5 TLE 1275.68 44.45 2 6
es30fst05 TLE TLE - - - TLE TLE - - -
es30fst07 9.22 0.28 0.00 * * 10.31 0.30 0.00 * *
es30fst08 93.14 8.15 0.00 3 4 94.66 8.89 0.22 2 4
es30fst09 3.91 0.24 0.00 7 10 8.99 0.33 0.00 7 9
es30fst10 2.54 0.08 0.00 3 2 3.45 0.08 0.00 3 7
es30fst11 TLE 460.37 8.57 7 4 TLE 523.47 12.52 7 4
es30fst12 0.70 0.01 0.00 * * 0.80 0.01 0.00 * *
es30fst13 46.22 2.18 0.00 * * 61.22 2.39 0.00 2 4
es30fst14 1.13 0.01 0.00 * * 0.99 0.01 0.00 * *
i080-001 245.63 313.09 54.94 7 12 377.24 294.36 9.99 7 1
i080-002 1100.40 242.45 4.24 7 9 1169.88 259.70 9.27 7 9
i080-003 119.52 115.31 2.94 2 9 143.96 138.22 8.93 3 2
i080-004 724.11 954.66 16.33 7 6 753.81 887.64 53.00 2 6
i080-005 688.35 531.31 9.92 7 7 887.96 833.94 46.88 7 3

Table 3 shows the results. Column UIPrB indicates the number of combina-
tions of heuristics for which the formula obtained by using both improvements
were solved faster, while column IPrB indicates the number of combinations of
heuristics for which the formula obtained by using the first improvement only
were solved faster. It is worth mentioning that the sum of both values may not
add to 36 due to formulae that were not solved within the time limit.

By analyzing table 3, we can notice that, overall, the formulae obtained by us-
ing both improvements are better solved by MiniMaxSAT, while the formula ob-
tained by not using the second improvement are better solved by EvaSolver. This
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Table 3. Number of combinations that performed better for each instance

Solver MiniMaxSAT [9] EvaSolver [14]
Encoding UIPrB IPrB UIPrB IPrB
20 45 13 29 7 6 30
25 54 15 22 14 11 20
30 70 17 22 6 0 0
35 98 19 0 0 16 20
i080-001 4 4 10 26
i080-002 10 2 8 20
i080-003 16 15 6 30
i080-004 21 6 9 3
i080-005 4 3 4 17

Solver MiniMaxSAT [9] EvaSolver [14]
Encoding UIPrB IPrB UIPrB IPrB
es30fst01 0 0 0 1
es30fst02 0 0 16 20
es30fst03 0 0 21 13
es30fst04 0 0 3 8
es30fst05 30 0 0 0
es30fst07 22 11 3 32
es30fst08 0 0 2 34
es30fst09 22 1 2 31
es30fst10 13 3 7 29
es30fst11 0 0 0 11
es30fst12 0 4 1 4
es30fst13 1 2 7 29
es30fst14 6 12 1 6

seems particularity true for the random instances and the class ES30FST, where
the differences between the respective number of easier instances are larger.

We suspect that the performance obtained with and without the improve-
ment may be related to the base algorithm and to the internal heuristics used
by the solvers. MiniMaxSAT is based on a Branch and Bound DPLL-like al-
gorithm [9], while EvaSolver is based on successive eliminations of unsatisifable
cores [14]. Since the base algorithm used by each solver is different, it may be
expected that the deduced unit clauses may impact them differently.

Also, the deduced unit clauses may interfere in the internal heuristics used
by the solvers. After unit propagation, the resulting formulae may be such that
the solver decides to use “worse” heuristics and hence explore the search space
poorly, which may not be the case if the formula remains unchanged, without
the deduced unit clauses. Further investigation on the solver’ internal algorithms
and instances’ characteristics is needed to confirm this conjecture.

As stated in section 6, we conjecture that the second improvement makes
the (initial) formula GAC, but unit propagation does not maintains it during
the search. We also conjecture that, if the formula is maintained GAC by unit
propagation during the search, then the solvers will perform better with the
second improvement for all instances. We suggest studying such maintenance as
a future work, as discussed in section 8.

Finally, let us briefly analyze the results obtained by both improvements
(UIPrB). Again, it is possible to notice that the second improvement did not
make all instances easier as expected, as previous discussed. However, for some
particular instances, such as 30 70 17, es30fst03, es30fst05 and i080-004, the
combination of both improvements did make the instance easier to be solved.

8 Conclusion and Future Work

In this paper we review the Parental-based relative encoding which is used to
solve the Steiner Tree Problem in graphs and improve it by using a method
described and used previously by Bryant & Velev [3] and Velev & Gao [4], and
another one that explore the dominance relation in the given graph.

As shown in section 7, the first method reduced the size of the resulting
formulae and the run time taken by MaxSAT solvers to solve them, as expected.
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The second method made some instances easier to solve, but did not improved
the run times overall.

As mentioned in section 6, we conjecture that the second improvement makes
the hard formula GAC, but unit propagation does not maintains this property
during the search. As mentioned in section 7, we also conjecture that maintaining
GAC during search may make the second method always improve the solvers.

Since it is polynomial to decide whether all terminal vertices are in the same
connected component, we suspect that it may be possible to build the hard for-
mula in such a way that GAC is maintained by unit propagation. As a future
work, we suggest studying some encoding for which the hard formula is main-
tained GAC by unit propagation, or prove that such encoding does not exist.
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